THE ELECTROCHEMICAL OXIDATION OF POLYFLUOROAROMATIC AMINES—III

THE SYNTHESIS OF POLYFLUOROACRIDONES

C. M. JENKINS, A. E. PEDLER and J. C. TATLOW

Department of Chemistry, University of Birmingham, Birmingham B15 2TT

(Received in the UK 15 March 1971; Accepted for publication 29 March 1971)

Abstract—Electrochemical oxidation of 2-amino-nona- and 2-amino-2',3',4',5',6' -penta-fluorobenzophenone at a platinum anode gave octa- and 1,2,3,4-tetra-fluoroacridone respectively. 2-Amino-nonafluorobenzophenone was prepared by reduction of the nitro-benzophenone, obtained by nitration of $2-\underline{H}$ -nona-fluorobenzophenone. Reduction of the nitro compound also gave perfluoro-3-phenylanthranil which was converted to octafluoroacridone by pyrolysis.

ELECTROCHEMICAL oxidation of amino-polyfluorodiphenylamines affords octa- and tetrafluorophenazine and substituted polyfluorophenazines. We now describe the application of this method to aminopolyfluorobenzophenones to give octa- and tetra-fluoroacridone.

The starting material for octafluoroacridone was 2<u>H</u>-nonafluorobenzhydrol made by the reaction of 1,2,3,4-tetrafluorophenyl magnesium bromide with pentafluorobenzaldehyde. Oxidation of this benzhydrol with chromium trioxide gave 2<u>H</u>-nonafluorobenzophenone. The structure of these two compounds was confirmed by ¹⁹F NMR and IR spectroscopy. Nitration of 2<u>H</u>-nonafluorobenzophenone was effected using fuming nitric acid in sulpholane containing BF₃ or in conc. H₂SO₄, the latter system being the more reactive. Nitrations of other hydrogen-containing polyfluoroaromatics have been described.²

Reduction of the 2-nitrononafluorobenzophenone with a Pd/C catalyst gave a mixture of two compounds. The major component was identified as 2-aminononafluorobenzaphenone by chemical analysis and spectrographic methods. The second component was found to be nonafluoro-3-phenyl anthranil arising via interaction with the CO group. Reduction of 2-nitro-nonafluorobenzophenone with stannous chloride/HCl in ethanol gave only the anthranil. 3-Pentafluorophenyl anthranil was formed³ by reduction of 2,3,4,5,6-pentafluoro-2'-nitro-benzophenone using zinc in ethanolic ammonium chloride, a known method for preparation of anthranils.³

Electrolytic oxidation of the amino-phenone at +1.55 - +1.60 V (vs SCE) gave octafluoroacridone, a yellow solid, m.p. 282-284° (with dec), with a UV spectrum in ethanol very similar to those of acridone⁴ and tetrafluoroacridone.³ Octafluoro-acridone was also obtained by the pyrolysis of nonafluoro-3-phenyl-anthranil (cf 1,2,3,4-tetrafluoroacridone from³ 3-pentafluorophenylanthranil).

1,2,3,4-Tetrafluoroacridone was obtained in low yield by electrochemical oxidation of 2-amino-2',3',4',5',6'-pentafluorobenzophenone³ at +1.4 - +1.5 V (vs SCE),

the sample obtained being identical with that from the alternative route.³ Further experiments showed that the tetrafluoroacridone itself was susceptible to electrochemical oxidation at the potentials used for the oxidation of the parent amine.

EXPERIMENTAL

The apparatus and technique for electrochemical oxidation were as previously described.¹ NMR spectra were recorded on samples dissolved in deuteroacetone unless otherwise stated. All data are quoted on the *delta* scale with high field (low frequency) shifts negative, the reference standards ($\delta = 0.0$) being TMS and CCl₃F for ¹H and ¹⁹F spectra respectively.

2<u>H</u>-Nonafluorobenzhydrol

To 1.2.3,4-tetrafluorobromobenzene⁵ (80 g) in dry ether (50 ml) was added dry Mg (0.85 g) and the mixed warmed and stirred for 3 hr. The soln was cooled to 0°, pentafluorobenzaldehyde (64 g) in dry ether (20 ml) added and the mixture stirred under reflux for 2 h. The soln was acidified with 4N HCl and the ether layer separated. The aqueous layer was extracted with ether (2 × 50 ml) and the combined ethereal solns dried (MgSO₄) and evaporated. Vacuum distillation of the residue gave (i) pentafluorobenzaldehyde (1 2 g) and (ii) a white solid (5.8 g), b.p. 94–95°/0.02 mm. Recrystallization from light petroleum (b.p. 60–80°) gave 2H-nonafluorobenzhydrol (2.77 g), m.p. 92:5–93°. (Found: C, 45·2; H, 11; F, 49·1: C₁₃H₃F₉O requires: C, 45·1; H, 0.87; F, 49·5%). Mass spectrometry gave a top mass peak 346 in agreement with the empirical formula. The ¹H NMR spectrum consisted of three signals intensity ratio 1:1:1 with chemical shifts δ 7·35 to 7·75 (m). 6·35 (s) and 5 05 (broad s). The ¹⁹F spectrum gave six signals at δ – 139 3. – 143·1, – 143·9 (all m's), – 155·4 (tr of tr's), –157·5 and – 162·7 (both m's) with intensity ratio 1:2:1:1:2:2 respectively, in agreement with the assigned structure.

2H-Nonafluorobenzophenone

Chromium trioxide (4.5 g) 2<u>H</u>-nonafluorobenzhydrol (5.3 g) and glacial AcOH (50 ml) were refluxed for 30 min and the mixture poured into excess water. The soln was then extracted with ether (3 × 100 ml), the ether extracts washed with NaHCO₃ aq, dried (MgSO₄), and evaporated to yield a colourless oil (3.5 g) which crystallized on standing. Recrystallization gave 2-H-nonafluorobenzophenone (2.49 g) m.p. 46°. (Found: C. 45·1; H, 0·3; F, 49·7: C₁₃HF₉O requires: C, 45·3; H, 0·3; F, 49·7 %). Mass spectrometry gave a top mass peak of 344 as required. The ¹H NMR spectrum (CCl₄) showed one signal δ 7·35–7·85 (m). The ¹⁹F spectrum consisted of seven signals at δ – 136·0. – 137·7. – 141·9. – 144·1 (all m's respectively). The IR spectrum showed a strong absorption at 1690 cm⁻¹ (>C=O) and a weak absorption at 3100 cm⁻¹ (aryl H).

2-Nitro-nonafluorobenzophenone

(i) Sulpholane. A mixture of sulpholane (20 ml) and fuming HNO₃ (10 ml) was saturated with BF₃ at 0°. 2-<u>H</u>-Nonafluorobenzophenone (30 g) was added and the mixture heated to 70° for 3½ h with stirring. The mixture was poured onto crushed ice and extracted with CH₂Cl₂ (2 × 100 ml). The organic layers were combined. dried (MgSO₄) and evaporated to yield a product (3·1 g), which was shown by TLC to be a two component mixture. Separation by column chromatography (silica gel, light petroleum b.p. 40–60°: C₆H₆ = 3:1 eluant) gave 2-<u>H</u>-nonafluorobenzophenone (1·4 g) and a second product (1·3 g). Recrystallization (EtOH) gave 2-*nitro-nonafluorobenzophenone* (0·7 g) m.p. 109·5–110°. (Found: C, 40·1; H, 0·4; N, 3·4; F, 43·9. C₁₃F₉NO₃ requires: C, 40·1; H, 0·0; N, 3·6; F, 44·0°₀). Mass spectrometry gave a top mass peak of 389 (required). The ¹⁹F NMR spectrum consisted of 6 signals at δ – 138·7, –140·5 (both m's), –141·8 (d of tri), –145·3, –146·8 (both m's) and –160·6 (tr of d's) with intensity ratios 1:2;1:2:1:2 respectively. The IR spectrum showed absorptions at 1700 cm⁻¹ (>C=O) and approximately 1500 cm⁻¹ (fluoroaromatic ring).

(ii) Conc. H_2SO_4 . The phenone (1.3 g) was dissolved in conc H_2SO_4 (5 ml) and heated to 65° when a mixture of fuming HNO₃ (4 ml) and conc H_2SO_4 (4 ml) was added slowly. The temp of the mixture was raised to 90° and maintained for 2 h. The soln was cooled, poured into crushed ice (200 g) and the mixture extracted with ether (3 × 50 ml). The ethereal extracts were dried (MgSO₄) and evaporated to yield 2-nitro-nonafluorobenzophenone (0.7 g).

Reduction of 2-nitro-nonafluorobenzophenone

(i) Hydrogenation. To 2-nitro-nonafluorobenzophenone (1.3 g) in EtOH (70 ml) was added Pd/Charcoal (0.1 g, 10% Pd) and the mixture hydrogenated. The suspension was filtered and the EtOH evaporated to give a yellow solid (1.1 g). Separation by column chromatography (silica gel, light petroleum b.p. 40-60°: $C_{6}H_{6} = 3:1$ eluant) gave (i) component A (0.3 g) and (ii) component B (0.5 g).

Component A (0 3 g) recrystallized from CCl₄ to give *perfluoro-3-phenyl-anthranil* (0.24 g) m.p. 125-126°. (Found: C, 43.5; N, 40; F, 48.0. $C_{13}F_9NO$ requires: C, 43.7; N, 3.9; F, 48.0%). Mass spectrometry gave a top mass peak of 357 (required). The ¹⁹F NMR spectrum consisted of 6 signals with chemical shifts $\delta - 137.9$, -147.2 (both m's), -148.6 (tr), -153.7 (m), -156.1 (tr) and -158.5 (m) with intensity ratios 2:2:1:1:1:2 respectively.

Component B (0.5 g) recrystallized from light petroleum b.p. $60-80^{\circ}$ to give 2-amino-nonafluorobenzophenone (0.38 g) m.p. 103.5-104.5°. (Found: C, 43.3; H, 0.7; N, 3.8. $C_{13}H_2F_9NO$ requires: C, 43.5; H, 0.6; N, 3.9%). Mass spectrometry gave a top mass peak of 359 (required). The ¹H NMR spectrum (in CCl₄) showed one signal at δ 7.1. The ¹⁹F spectrum consisted of 7 signals with chemical shifts δ -140.2 (d), -143.6 (m), -146.6 (d of tr's), -153.6 (tr), -161.0, -162.8 (both m's), and -175.8 (d of tr's) with intensity ratios 1:2:1:1:2:1:1 respectively.

(ii) Stannous chloride. To a soln of 2-nitro-nonafluorobenzophenone (0.6 g) in EtOH (30 ml) and water (7 ml) containing conc HCl (5 ml) was added $SnCl_2$ (1.0 g. $SnCl_2$. $2H_2O$). The mixture was stirred at 50° for 4 h, then neutralized with 4N NaOH and extracted with ether (3 \times 50 ml). The ethereal extracts were dried (MgSO₄) and evaporated to give a residue (0.42 g) which was shown to be perfluoro-3-phenyl-anthranil by a comparison of IR spectra.

Electrolytic oxidation of 2-amino-nonafluorobenzophenone

The phenone (0.4 g) was electrolytically oxidized at an anode potential of +1 55-1.60 V (vs S.C.E.) at a platinum anode in an electrolyte of acetone (150 ml), water (260 ml) and potassium acetate (75 g) as previously described.¹ At the end of the electrolysis the anolyte was evaporated to remove acetone and the aqueous residue ether extracted (4×100 ml). The ethereal extracts were dried (MgSO₄) and evaporated to give a product (0.45 g) which was purified by column chromatography (silica gel, EtOH eluant) to yield *octafluoroacridone* (015 g) m.p. 282-284° (dec). Found: C, 461; H, 0.7; N, 4.1. C_{1.3}HF₈NO requires: C, 460; H, 0.3; N, 4.1%).

Accurate mass measurement gave a top mass peak 338'992797 (required 338'993029). The IR spectrum showed strong bands at 1610 cm⁻¹ (>C=O) and approx 1500 cm⁻¹ (fluoroaromatic rings). The UV spectrum showed absorption maxima at λ_{max} (EtOH) 2475, 2965, 3070, 3460, 3700 and 3850 A (*i.* 58, 500, 5610, 7800, 6950, 8500 and 8500).

Pyrolysis of perfluoro-3-phenyl-anthranil

The anthranil (0.15 g) was heated at 235° for 12 h in a sealed tube, when the product was extracted with EtOH and filtered. The filtrate was evaporated to give a product (80 mg), which was refluxed with light petroleum b.p. $60-80^{\circ}$, filtered and evaporated. The residue (60 mg) was identified as octafluoroacridone by a comparison of IR spectra.

Electrolytic oxidation of 2-amino-2',3',4',5',6'-pentafluorobenzophenone

The phenone (2.9 g) prepared as previously described³ was electrolytically oxidized as described above in the standard electrolyte (450 ml) at a potential of +1.4-1.5 V, and the anolyte extracted in the usual way. The product was sublimed under reduced pressure at 100–110° to give starting material (0.6 g), identified by IR spectroscopy. Further sublimation at 200° (0.05 mm Hg) gave 1,2,3,4-tetrafluoroacridone (0.55 g) identical with the compound previously described.³ Further experiments showed that tetrafluoroacridone itself was susceptible to electrolytic oxidation at approx +15 V; no identifiable products were obtained.

Acknowledgements—Thanks are due to Dr. J. Majer for mass spectrometry and Dr. E. F. Mooney for the measurement and interpretation of NMR spectra.

REFERENCES

- ¹ A. G. Hudson, A. E. Pedler and J. C. Tatlow, *Tetrahedron Letters* 2143 (1968); A. G. Hudson, A. E. Pedler and J. C. Tatlow, *Tetrahedron* 3791, 26, (1970); A. G. Hudson, C. M. Jenkins, A. E. Pedler and J. C. Tatlow, *Ibid.* 5781, 26 (1970)
- ² P. L. Coe and A. E. Jukes, *Ibid.* 5913, (1968)
- ³ P. L. Coe, A. E. Jukes and J. C. Tatlow, J. Chem. Soc. 2020, (1966)
- ⁴ Heterocyclic Compounds, 5 and 6-Membered Ring Compounds with Nitrogen and Oxygen. Interscience, New York (1962)
- ⁵ J. F. Tilney Bassett Chem. & Ind. 693, (1965)